Last update: 1:46pm, Oct 31.

Math 564: Adv. Analysis 1 HOMEWORK 4 Due: Nov 3 (Fri), 11:59pm

Unless otherwise is specified, (X, μ) is a measure space and $L^1 := L^1(X, \mu)$.

(a) Let (X, B) and (Y, C) be measurable spaces and let T : X → Y be a (B, C)-measurable map. Prove the change of variable formula: for each measure μ on B and a measurable f ∈ L¹(Y, C, T_{*}μ),

$$\int_X (f \circ T) \, d\mu = \int_Y f \, d(T_*\mu).$$

(b) As an application, let $T_A : \mathbb{R}^d \to \mathbb{R}^d$ be the linear transformation given by a $d \times d$ invertible matrix A, i.e. Tx := Ax. Let λ denote the Lebesgue measure on \mathbb{R}^d and prove that $T_*\lambda = |\det A|^{-1}\lambda$, to conclude that

$$\int (f \circ T_A) d\lambda = \int f |\det A|^{-1} d\lambda.$$

2. For $f_n \in L^1$, prove that if $\sum_{n \in \mathbb{N}} \int |f_n| d\mu < \infty$, then $\sum_{n \in \mathbb{N}} f_n(x)$ converges absolutely for a.e. $x \in X$ and $\sum_{n \in \mathbb{N}} f_n \in L^1$. Furthermore, the convergence is also in L^1 , i.e. the partial sums $\sum_{n < N} f_n$ converge in the L^1 -norm to $\sum_{n \in \mathbb{N}} f_n$. In particular:

$$\int \sum_{n\in\mathbb{N}} f_n \, d\mu = \sum_{n\in\mathbb{N}} \int f_n \, d\mu.$$

- **3.** Prove the **generalized dominated convergence theorem**: Let $f_n, f \in L^1$ be such that $f_n \to f$ a.e. If there are non-negative $g_n, g \in L^1$ such that $g_n \to g$ a.e., $\int g_n d\mu \to \int g d\mu$, and $|f_n| \leq g_n$ for each $n \in \mathbb{N}$, then $f_n \to_{L^1} f$. In particular, $\int f_n d\mu \to \int f d\mu$.
- **4.** Let $f_n, f \in L^1$ be such that $f_n \to f$ a.e. and $\int |f_n| \to \int |f|$.
 - (a) Prove that $f_n \rightarrow_{L^1} f$.
 - (b) Conclude that $\int_A f_n \to \int_A f$ for each measurable $A \subseteq X$.
- **5.** Let $f_n \in L^1(\mathbb{R}, \lambda)$ be a non-negative Lebesgue integrable functions on \mathbb{R} . Prove or give a counterexample to the following statements.

(a)
$$\int \limsup_{n \to \infty} f_n \ge \limsup_{n \to \infty} \int f_n$$

- (b) If $f_n \to 0$ both pointwise and in the L^1 -norm, then there is $g \in L^1(\mathbb{R}, \lambda)$ such that $f_n \leq g$ for each $n \in \mathbb{N}$.
- **6.** Let (f_n) be a sequence of μ -measurable functions $X \to \mathbb{R}$.

- (a) Observe that if (f_n) converges in measure (to some measurable function f) then it is Cauchy in measure.
- (b) If (f_n) is Cauchy in measure and a subsequence (f_{n_k}) converges in measure to a measurable function f, then $f_n \rightarrow_{\mu} f$.

7. Tightness of the Fubini-Tonelli hypothesis.

(a) **Non**- σ -finite. Let X := [0,1], and let μ and ν be, respectively, Lebesgue and counting measures on X. Because ν is not σ -finite, the product measure $\mu \times \nu$ is not unique, but we let $\mu \times \nu$ denote the largest of them, namely, the outer measure $(\mu \times \nu)^*$ induced by the premeasure $\mu \times \nu$ on the algebra generated by $\mathcal{B}(X) \times \mathcal{B}(X)$.

For the diagonal $\Delta := \{(x, x) : x \in X\}$, compute

$$\int \nu(\Delta_x) d\mu(x), \ \int \mu(\Delta^y) d\nu(y), \text{ and } \mu \times \nu(\Delta)$$

to verify that no two are equal to each other.

HINT: To compute $\mu \times \nu(\Delta)$, recall the definition of the outer measure.

- (b) **Non-integrable.** Let $\mu = \nu$ be the counting measure on \mathbb{N} (defined on $\mathscr{P}(\mathbb{N})$). Let $f : \mathbb{N} \times \mathbb{N} \to \mathbb{R}$ be defined by setting f(x, y) to be 1 if x = y, -1 if x = y + 1, and 0 otherwise. Verify that f is not $\mu \times \nu$ -integrable, and although the integrals $\iint \int \int d\mu d\nu$ and $\iint \int \int d\nu d\mu$ both exist, they are unequal.
- (c) [*Optional*] **Non-measurable.** Let $X := \omega_1$ and let $\mathcal{M} = \mathcal{N}$ be the σ -algebra of countable and co-countable subsets of ω_1 . Let $\mu = \nu$ be defined to be 0 on countable and 1 on co-countable sets. Let $R := \langle i.e. \mathbb{R} := \{(x, y) \in \omega_1 \times \omega_1 : x < y\}$. Then R is not in $\mathcal{M} \times \mathcal{N}$. However, the fibers R_x and R^y are in $\mathcal{M} = \mathcal{N}$ for each $x, y \in \omega_1$, and the integrals $\int \nu(R_x) d\mu(x)$ and $\int \mu(R^y) d\nu(y)$ exist, but they are unequal.
- 8. $\mu \times \nu$ -measurable Fubini–Tonelli. Let (X, \mathcal{M}, μ) and (Y, \mathcal{N}, ν) be σ -finite measure spaces and let $f : X \times Y \to \overline{\mathbb{R}}$ be a $\mu \times \nu$ -measurable function. Prove:
 - (a) The fibers f_x and f^y are respectively ν and μ measurable for μ -a.e. $x \in X$ and ν -a.e. $y \in Y$.

CAUTION: Folland claims \mathcal{M} and \mathcal{N} measurability instead, which is wrong.

(b) If $f \ge 0$, then functions $g: x \mapsto \int f_x dv$ and $h: y \mapsto \int f^y d\mu$ are defined respectively μ -a.e. and ν -a.e., and they are respectively μ and ν measurable. Moreover,

$$\iint \int f \, d\nu \, d\mu = \int f \, d\mu \times \nu = \iint \int f \, d\mu \, d\nu. \tag{*}$$

(c) If *f* is $\mu \times \nu$ -integrable, then in fact *g* and *h* are μ and ν integrable and (*) holds.